VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells

نویسندگان

  • Qiming Li
  • Shudong Xia
  • Hanyun Fang
  • Jiansheng Pan
  • Yinfeng Jia
  • Gang Deng
چکیده

Stem/progenitor cells serve an important role in the process of blood vessel repair. However, the mechanism of vascular repair mediated by C-X-C chemokine receptor type 4-positive (CXCR4+) bone marrow-derived mesenchymal stem cells (BMSCs) following myocardial infarction remains unclear. The aim of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on vessel endothelial differentiation from BMSCs. CXCR4+ BMSCs were isolated from the femoral bone marrow of 2-month-old mice and the cells were treated with VEGF. Expression of endothelial cell markers and the functional properties were assessed by reverse transcription-quantitative polymerase chain reaction, flow cytometry and vascular formation analyses. The results indicated that the CXCR4+ BMSCs from femoral bone marrow cells expressed putative cell surface markers of mesenchymal stem cells. Treatment with VEGF induced platelet/endothelial cell adhesion molecule-1 (PECAM-1) and von Willebrand factor (vWF) expression at the transcriptional and translational levels, compared with untreated controls. Moreover, VEGF treatment induced CXCR4+ BMSCs to form hollow tube-like structures on Matrigel, suggesting that the differentiated endothelial cells had the functional properties of blood vessels. The results demonstrate that the CXCR4+ BMSCs were able to differentiate into vessel endothelial cells following VEGF treatment. For cell transplantation in vascular disease, it may be concluded that CXCR4+ BMSCs are a novel source of endothelial progenitor cells with high potential for application in vascular repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells

Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...

متن کامل

Simvastatin combined with bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis through SDF-1α/CXCR4 pathway

Objective(s): Chemokines are wound mediators that promote angiogenesis during wound healing. We hypothesized that Simvastatin in combination with the bone marrow mesenchymal stromal cells (BMSCs) improve burn wound healing by ameliorating angiogenesis via SDF-1α/CXCR4 pathway.Materials and Methods: Under general anesthesia, deep partial-...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017